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Abstract
Starting from a microscopic model of coupled frustrated spin-1/2 chains, we
study the effect of doping with static non-magnetic impurities. The effective
interaction between the S = 1

2 moments induced by the dopants is analysed.
This interaction is non-frustrated and extended in space. The picture is
applied to the antiferromagnetic long-range ordering observed in spin–Peierls
compounds such as CuGeO3 doped with non-magnetic impurities. The effective
diluted long-range Heisenberg spin- 1

2 model is studied using the stochastic
series expansion (SSE) quantum Monte Carlo algorithm. Simulations at
extremely low temperature on square lattices with up to 96×96 sites are carried
out to investigate the AF ordering down to impurity concentrations x as low as
x ≈ 0.02.

1. Introduction

Doping a spin–Peierls (SP) system with non-magnetic impurities leads to fascinating
low-temperature properties. For instance, in the doped quasi-one-dimensional compound
Cu1−x MxGeO3 (M = Zn or Mg), the discovery of coexistence between dimerization and
antiferromagnetic (AF) long-range order (LRO) at small impurity concentration x has
motivated extensive experimental [1] and theoretical [2] investigations. Impurity-induced AF
LRO has also been observed in other doped spin-gapped materials such as the two-leg ladder
Sr(Cu1−x Znx)2O3 [3], the Haldane compound Pb(Ni1−x Mgx)2V2O8 [4], and the coupled
spin-dimer system TlCu1−x Mgx Cl3 [5]. In doped SP materials, frustration and inter-chain
couplings are necessary to understand the impurity-induced AF ordering. Within a realistic
model including an elastic coupling to a 2D lattice [6], it was shown that a non-magnetic dopant
leads to a local magnetic moment in its vicinity. Such moments experience a non-frustrated
interaction that could lead, at T = 0, to a finite staggered magnetization [7]. Recently, similar
conclusions were reached using a model with purely magnetic interactions including a four-
spin cyclic exchange coupling [8].
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Figure 1. Schematic picture of the coupled chain model with nearest-neighbour (NN), next-nearest-
neighbour (NNN), inter-chain, and four-spin couplings J , α J , J⊥, and J4. Full and open circles
represent magnetic spin- 1

2 and non-magnetic dopant sites, respectively.

(This figure is in colour only in the electronic version)

In the following we report numerical studies of a generic model for doped coupled
frustrated spin chains [8, 9]. After a presentation of the microscopic description of the coupled
SP chains in section 2, we focus in section 3 on the formation of local moments induced
by doping and report exact diagonalization (ED) results for the effective magnetic coupling
between two released spin- 1

2 moments. In section 4 we use results of section 3 to construct
an effective diluted S = 1

2 model. We take advantage of the non-frustrated character of
the resulting Hamiltonian and perform extensive SSE simulations on 2D lattices as large as
96×96 with up to Ns = 256 (dopant) spins, down to temperature as low as T/J = 1/β = 2−18.
The T = 0 staggered magnetization as well as the Néel temperature (assuming a small 3D
coupling treated using the RPA) are shown versus dopant concentration. We conclude with a
brief summary in section 5.

2. Generic microscopic description of coupled SP chains

We start with a microscopic Hamiltonian describing a 2D array of coupled frustrated spin- 1
2

chains (see figure 1),

H =
∑
i,a

[J (1 + δi,a)Si,a · Si+1,a + αJSi,a · Si+2,a + hi,a Sz
i,a], (1)

where the i and a indices label the L sites and M chains respectively. The energy scale is set
by the exchange coupling along the chains (J = 1), and α is the relative magnitude of the next-
nearest-neighbour frustrating magnetic coupling. Randomly located dopants (see figure 1) are
simply described as inert sites (i, a) where Si,a = 0 is set in equation (1). Small inter-chain
couplings are included here in a mean-field self-consistent treatment,

hi,a = J⊥(〈Sz
i,a+1〉 + 〈Sz

i,a−1〉), (2)

δi,a = J4

J
{〈Si,a+1 · Si+1,a+1〉 + 〈Si,a−1 · Si+1,a−1〉}. (3)

While the first term accounts for first-order effects in the inter-chain magnetic coupling J⊥, the
second term might originate from a four-spin cyclic exchange process [8]. At a qualitative level,
J4 can also mimic higher-order effects in J⊥ [10] or the coupling to a 2D (or 3D) lattice [6].

In the pure case (i.e., without impurities), all the chains are equivalent and the problem
is therefore reduced to a single-chain problem in a staggered magnetic field hi = −2J⊥〈Sz

i 〉
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Figure 2. (a) ED data of the soliton average position versus J4 calculated for α = 0.5 and J⊥ = 0.1.
Different symbols are used for L × M = 12 × 6 and 16 × 8 clusters. The long-dashed curve is
a power-law fit. (b) Magnetization profile in the doped (a = 1) chain at J4 = 0.08, i.e. ξ‖ � 2.5
(adapted from [8]).

and with its NN exchange modulated δ Ji = J4〈�Si · �Si+1〉 if J4 < 0 or δ Ji = J4〈�Si+1 · �Si+2〉 if
J4 > 0. Using Lanczos ED to solve the MF procedure [11], we identify two different phases
in the (α, J⊥) plane: a dimerized SP phase and an AF ordered phase separated by a transition
line J⊥ = J c

⊥(α) (see figure 2 of [8]). Both the frustration α (for α > αc � 0.24 [12]) and
J4 stabilize the SP phase. Note that J c

⊥(α) → 0 when α → αc at the quantum critical point
(QCP). In the following all the calculations will be performed at α = 0.5 and J⊥ = 0.1 which
corresponds to a dimerized SP ground state (GS) in the parameter space (α, J⊥).

3. Formation of local moments by doping

In the doped case, following the method used in [7], the MF equations are solved self-
consistently on finite L×M clusters and lead to a non-uniform solution. At each step of the MF
iteration procedure, we use Lanczos ED techniques to treat exactly (although independently)
the M non-equivalent finite chains and compute 〈Sz

i,a〉 and 〈Si,a · Si+1,a〉 for the next iteration
step until convergence is eventually achieved [11]. As found in [8], the soliton confinement
is controlled by the J4 coupling. The confinement length in the chain direction, defined as
ξ‖ = ∑

i i |Sz
i |/

∑
i |Sz

i |, ‘measures’ the average position of the magnetic moment from the
dopant site and follows a power law ξ‖ ∼ J −η

4 (see figure 2). Qualitatively, it means that by
breaking a dimer each impurity releases an effective localized spin 1

2 (see figure 3). At very
low temperature (i.e. below the temperature scale set by the spin gap of the undoped system)
the physics is then dominated by these effective spin- 1

2 degrees of freedom.
The effective magnetic coupling between two impurities (located at random positions in

the system) is given by the singlet–triplet gap J eff(�i,�a) = E(S = 1) − E(S = 0), �i
(�a) being the relative dopant separation in the longitudinal (transverse) direction. One of
our key results is the non-frustrated character of this effective coupling (although the original
model is frustrated) and its long-distance behaviour. In figure 4, the magnitude |J eff | is plotted
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Figure 3. Schematic picture of a doped SP system. Thick bonds correspond to dimers, and the non-
magnetic dopants are represented by open circles. The spin- 1

2 moments released by the dopants
are shown as arrows.
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Figure 4. Magnitude of J eff versus separation (�i, �a) computed by ED on an L × M = 16 × 8
system with α = 0.5, J⊥ = 0.1 and J4 = 0.08. Closed (open) symbols correspond to AF (F)
interactions. The solid curves are fits, discussed in [9].

versus the impurity separation in the chain direction �i for different separations �a = 0–3
in the transverse direction. Using only five phenomenological parameters, two energy scales
and three length scales, we have been able to fit the ED data for a wide range of physical
parameters (see [9]).

4. Quantum Monte Carlo study of AF ordering

The computed non-frustrating long-ranged magnetic two-body interaction is used to construct
an effective Heisenberg model of randomly located spin- 1

2 objects on a N = L × L square
lattice

Heff =
∑
r1,r2

εr1εr2 J eff(r1 − r2)Sr1 · Sr2 , (4)

with εr = 1 (0) with probability x (1 − x), where x is the dopant concentration. Note that
one implicitly assumes that three- or multiple-spin interactions can be neglected. This model
has been studied with the SSE method [13]. In this approach, the interactions are sampled
stochastically, and for a long-ranged interaction the computational effort is then reduced from
∼N2

s (Ns = xN being the number of spins) to Ns ln(Ns) [14]. In order to accelerate the
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Figure 5. Doping dependence of mAF for various numbers of spins (as shown on the plot) and
in the thermodynamic limit (full symbols). The solid curve corresponds to a power law fit giving
mAF � 0.796x1.38.

convergence of the simulations at the very low temperatures needed to approach the GS, we
use a β-doubling scheme [15] where the inverse temperature is successively increased by a
factor of two. An almost equilibrated starting configuration for a new β can then be obtained
by ‘doubling’ the last configuration generated at the previous β. Comparing results at several
β = 2n , one can subsequently check that the T → 0 limit has been reached.

The AF ordering instability is signalled by the divergencewith system size of the staggered
structure factor,

S(π, π) = 1

N

〈(∑
i

(−1)i Sz
i

)2〉
, (5)

where i labels the sites, magnetic or non-magnetic, on the 2D lattice. In the present diluted
model, it is more convenient to define a staggered structure factor per site s(π, π) = S(π, π)/N
which should converge in an ordered AF state. The (finite-size) sublattice magnetization
mAF can then be obtained by averaging s(π, π) over a large number of dopant distributions,
i.e., (mAF)

2 = 3〈s(π, π)〉dis, where the factor of three comes from the spin-rotational
invariance [16] and 〈· · ·〉dis stands for the disorder average, which we have performed using at
least 2000 random samples.

Since, strictly speaking, ordering in 2D occurs at T = 0 (β = ∞) we have first converged
each simulation to T = 0 using the β-doubling scheme [15]. Then, using a polynomial fit in
1/

√
Ns (order two is sufficient) an accurate extrapolation to the thermodynamic limit, Ns → ∞

(or L → ∞ at constant x), has been performed. The doping dependence of the extrapolated
mAF is given in figure 5. We have tested various fits of the data. A power law ∝xµ gives an
exponent µ � 1.4 > 1, which implies a magnetization per dopant mspin ∼ x0.4 which vanishes
in the x → 0 limit. However, alternative forms, e.g., a1x + a2x2, cannot be ruled out.

We finish this investigation by calculating the Néel temperature, assuming a small
(effective) 3D magnetic coupling λ3D between the planes. Using an RPA criterion, the critical
temperature TN is simply given by χstag(TN) = 1/|λ3D| where the staggered spin susceptibility
(normalized per site) is defined as usual by

χstag(T ) = 1

N
∑
i, j

(−1)ri +r j

∫ β

0
dτ 〈Sz

i (0)Sz
j (τ )〉, (6)
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Figure 6. Néel temperature versus dopant concentration x for a 3D RPA inter-plane coupling
λ3D = 0.02 and for Ns = 256 and 576 spins. The solid curve is a fit to the form TN � 7.37× x2.507

for Ns = 576.

and is averaged over several disorder configurations (typically 2000). Since χstag(TN) is
expected to reach its thermodynamic limit for a finite linear size L as long as TN remains
finite, accurate values of TN can be obtained using a finite-size computation of χstag(T ) for
not too small inter-chain couplings. TN is determined by the intersection of the curve χstag(T )

with a horizontal line at 1/λ3D. The doping dependence of TN is plotted in figure 6 for a
particularly small value λ3D = 0.02 (for λ3D = 0.01, see [9]). It clearly reveals a rapid
decrease of TN when x → 0, but, in agreement with experiments [1], does not suggest a non-
zero critical concentration. More precisely, it was shown by Manabe et al [17] that the Néel
temperature measured in Cu1−x Znx GeO3 could be fitted by an exponential law of the form
TN(x) = A exp(−B/x), with A and B two phenomenologicalparameters. From our numerical
results, one decade is not enough to distinguish an exponential form from a power law.

5. Conclusion

In summary, we have proposed a quite versatile procedure for studying impurities in gapped
spin system and illustrated it in the case of doped SP chains. For this system, we have shown
that the local moment induced by a dopant is controlled by a J4 term which might have
several origins (magnetic or elastic). Using ED technique to compute the effective interaction
between two dopants, an effective low-energy Hamiltonian has been constructed and studied
with the SSE method (which is applicable here because of the remarkable non-frustrated nature
of the effective model) in combination with finite-size scaling to compute the GS staggered
magnetization. Calculations of the staggered susceptibility at finite temperature were used
in combination with an RPA treatment of the 3D couplings to study the doping dependence
of the Néel temperature. Finally, we emphasize that the procedure developed here could
be extended easily to other spin-gapped systems like interacting dimer systems [5], weakly
coupled ladders [3] or 2D disordered systems.
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